物联网中的分布式数据科学计算

vmware[®]

0

0

EXPLORE

....

韩 鹏

Staff Solution Architect VMware Greenplum

©2022 VMware, Inc.

韩鹏简历

曾任 <u>深圳证券交易所 "新一代监察系统MPP项目"项目经理兼架构师。</u>

曾任 <u>深圳证券交易所 "新一代海量实时分析系统咨询项目"</u>,首席架构咨询师。 曾任"<u>中国首个银行业PaaS(招商银行Pivotal Cloud Foundry)项目</u>"项目经理及架构师。 曾在中航信(雇员4000+),担任"大数据平台(GP+HADOOP)"产品经理兼技术经理。 曾领导29人团队(任架构师及项目经理),完成<u>中国首例从Teradata至Greenplum的企业数据仓库迁</u> 移。

专注于大数据及数据仓库领域16年,熟悉各类分布式数据平台(MPP、NoSQL、Streaming), 兼具 PaaS云平台实施经验。

具备8000余人天项目管理经验,以及开发、运营大型信息系统经验。

2010年起,持有工信部和人社部颁发的"系统分析师"证书。

吉林大学计算机科学与技术学院"计算机软件与理论"专业硕士 , 毕业于教育部"符号计算与知识工 程"教育部重点实验室。

2019 Gartner《分析型数据管理解决方案核心能力》

理和逻辑强耦合高时延

Figure 1. Vendors' Product Scores for Traditional Data Warehouse Use Case

Product or Service Scores for Traditional Data Warehouse

Teradata				3.73	
Oracle (Oracle Exadata)			3.	.54	
Pivotal (Pivotal Greenplum)	1	1	3.	49	
SAP (SAP HANA)			3.35	5	
Google (BigQuery)			3.27		
Micro Focus (Vertica)			3.26		
GBase (GBase 8a)			3.23		
IBM (Db2)			3.22		
Snowflake			3.22		
Amazon Web Services (Amazon Redshift)			3.16		
Microsoft (Azure SQL Data Warehouse)			3.15		
Alibaba Cloud (MaxCompute)			3.08		
Huawei (FusionInsight Big Data)			3.03		
MarkLogic			3.01		
MapR Technologies (MapR Data Platform)			2.92		
Hortonworks (Hortonworks Data Platform)			2.81		
Cloudera (Cloudera Enterprise)			2.79		
Arm Treasure Data			2.78		
Neo4j			2.76		
	1	2	3	4	5
As of 21 January 2019				10 Ga	rtner, inc.

实时数仓

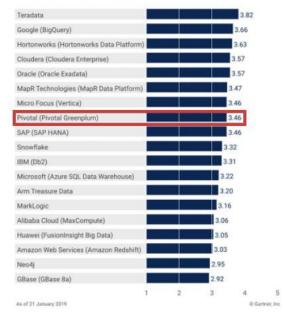
Figure 2. Vendors' Product Scores for Real-Time Data Warehouse Use Case

Product or Service Scores for Real-Time Data Warehouse

Teradata			3.71
SAP (SAP HANA)			3.55
Google (BigQuery)			3.53
Oracle (Oracle Exadata)		3.1	37
Pivotal (Pivotal Greenplum)		3.	37
IBM (Db2)		3.2	9
MarkLogic		3.2	9
Micro Focus (Vertica)		3.22	2
Snowflake		3.14	
Alibaba Cloud (MaxCompute)		3.13	
Neo4j		3.12	
Microsoft (Azure SQL Data Warehouse)		3.11	
Amazon Web Services (Amazon Redshift)		3.09	
MapR Technologies (MapR Data Platform)		3.06	
GBase (GBase 8a)		3.05	
Huawei (FusionInsight Big Data)		3.00	
Cloudera (Cloudera Enterprise)		2.87	
Hortonworks (Hortonworks Data Platform)		2.85	
Arm Treasure Data		2.83	
1	2	3	4
As of 21 January 2019			

Figure 3. Vendors' Product Scores for Logical Data Warehouse Use Case

Product or Service Scores for Logical Data Warehouse


Teradata			3.91		
Oracle (Oracle Exadata)	cle (Oracle Exadata)				
SAP (SAP HANA)		3.57			
Pivotal (Pivotal Greenplum)			3.49		
Micro Focus (Vertica)			3.38		
MarkLogic		3.35			
IBM (Db2)		3.32			
Microsoft (Azure SQL Data Warehouse)		3.32			
MapR Technologies (MapR Data Platform)		3.28			
Google (BigQuery)		3.25			
Hortonworks (Hortonworks Data Platform)		3.24			
Arm Treasure Data		3.22			
Cloudera (Cloudera Enterprise)		3.19			
Snowflake		3.17			
Alibaba Cloud (MaxCompute)		3.1	6		
GBase (GBase 8a)		3.10	0		
Huawei (FusionInsight Big Data)		3.10	0		
Amazon Web Services (Amazon Redshift)		3.01			
Neo4j		2.77			
1	2	3	4	5	
As of 21 January 2019			0 Ga	rtner, In	

Source: Gartner (March 2019)

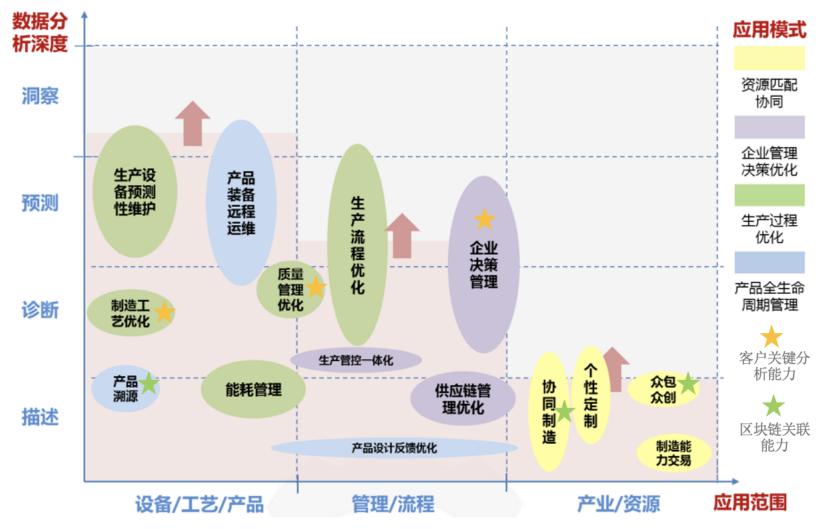
Context-Independent数仓 (逻辑松耦合)

Figure 4. Vendors' Product Scores for Context-Independent Data Warehouse Use Case

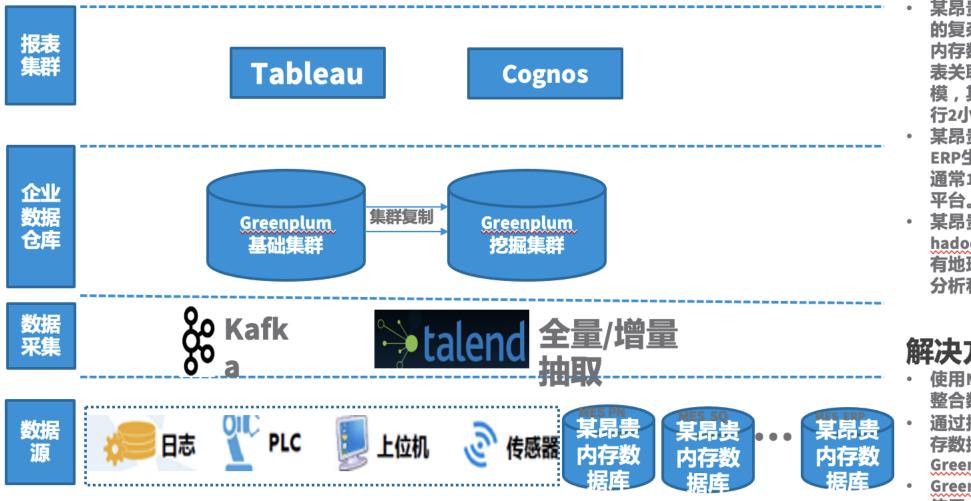
Product or Service Scores for Context-Independent Data Warehouse

Source: Gartner (March 2019)

5


© Gartner, Inc

Source: Gartner (March 2019)



Source: Gartner (March 2019)

物联网及企业大数据分析应用分类图

国内新能源公司:产能优化

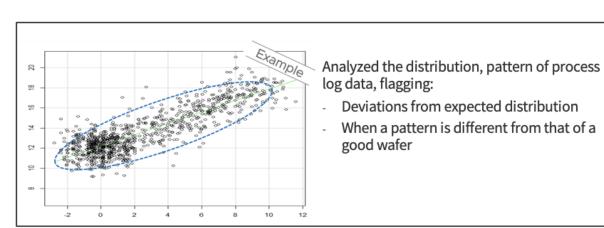
客户挑战

某昂贵内存数据库无法支持大数据量 的复杂计算。在追溯系统中,某昂贵 内存数据库 配置4TB内存,涉及16张 表关联,其中两张表为10亿和90亿规 ,其他表均为10万级别的小表。运 行2小时后内存溢出报错 某昂贵内存数据库主要定位OLTP和 ERP生态系统,生态封闭,部署规模 通常10TB以内。无法作为企业级数据

某昂贵内存数据库不能直接对接 hadoop、没有库内数据挖掘算法、没 有地理信息数据处理能力,没有文本 分析和挖掘能力。

解决方案

- 使用MPP架构,搭建企业级数据平台 整合数十个某昂贵内存数据库源数据
- 通过报表预加工处理,原来某昂贵内 存数据库上无法支撑的报表查询,在 Greenplum上只需要秒级返回。
- Greenplum自带kafka数据加载接口; 使用Talend增量抽取某昂贵内存数据 **库数据**。



客户 业内领先的芯片厂

挑战

利用数据进一步提高生产质量和数量

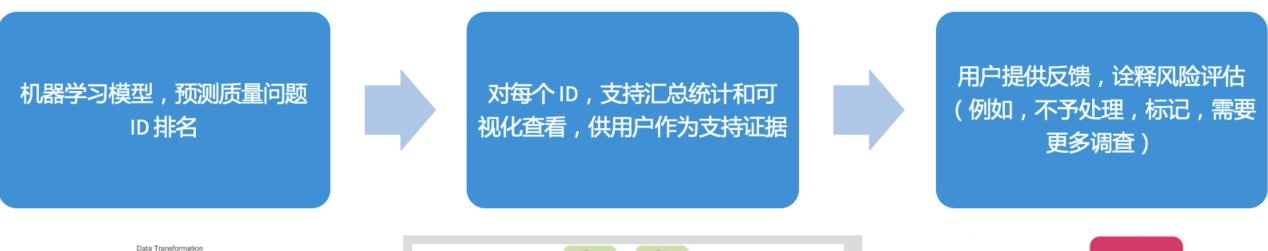
在性能和可扩展性方面,足以应对来自工厂产线的多种传 感器数据

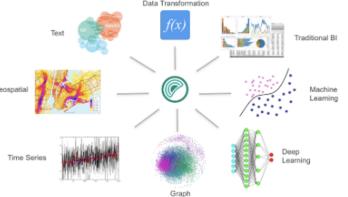
成果

构建企业智能应用程序,以监控半导体制造输出的质量和 产量

开发预测模型和传感器数据的可视化组件,嵌入智能应用 程序

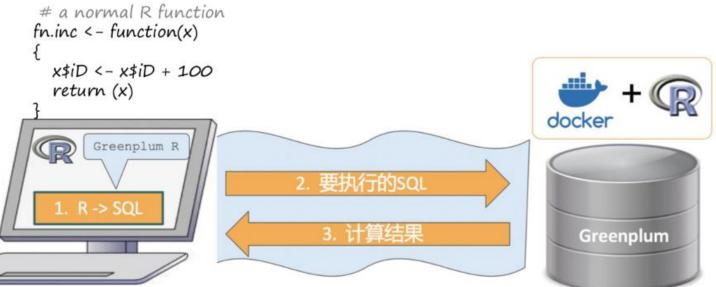
影响


产量显著提高,收入大幅增加


360 度全方位了解产线的关键组件和尺寸,包括单个传感器和晶圆级别

MWARE® ©2022 VMware, Inc.

智能应用流程概览



简化数据科学编程接口-并行R

- 开发端编写R代码
- R函数推送代码到GP服务器
- Docker容器中执行R函数
- 结果存在数据库或返给开发端

run fn.inc in Greenplum in parallel # fn.inc will be transferred to Greenplum and run in parallel db.gpApply(data, output.name=<output table>, FUN=fn.inc, ...)

- 数据无需离开GP
- 将代码推送到GP

日用高效算法: 机器学习, 图分析, 统计等

监督学习

Neural Networks Support Vector Machines (SVM) Conditional Random Field (CRF) Regression Models

Clustered Variance

VADlib

Cox-Proportional Hazards Regression

Functions

- Elastic Net Regularization
- Generalized Linear Models
- Linear Regression
- Logistic Regression
- Marginal Effects
- Multinomial Regression
- Naïve Bayes
- Ordinal Regression
- Robust Variance

Tree Methods

- Decision Tree
- Random Forest

非监督学习

Association Rules (Apriori) Clustering (k-Means) Principal Component Analysis (PCA) Topic Modelling (Latent Dirichlet Allocation)

最近邻居

k-Nearest Neighbors

图分析 All Pairs Shortest Path (APSP) Breadth-First Search Hyperlink-Induced Topic Search (HITS) Average Path Length Closeness Centrality Graph Diameter In-Out Degree PageRank and Personalized PageRank

Single Source Shortest Path (SSSP) Weakly Connected Components

工具函数

Columns to Vector Conjugate Gradient Linear Solvers • Dense Linear Systems • Sparse Linear Systems Mini-Batching PMML Export Term Frequency for Text Vector to Columns

抽样

Balanced/ Random/ Stratified Sampling

时序分析

ARIMA

数据类型和转换

Array and Matrix Operations
Matrix Factorization

Low Rank
Singular Value Decomposition (SVD)

Norms and Distance Functions
Sparse Vectors
Encoding Categorical Variables
Path Functions
Pivot
Sessionize
Stemming

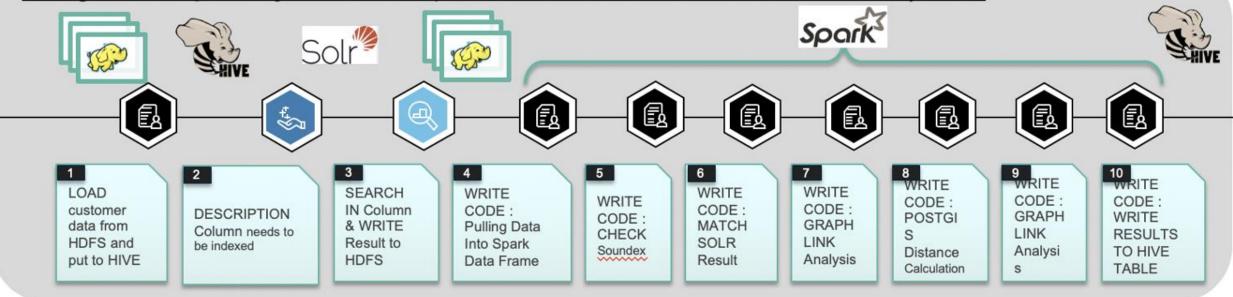
统计

Descriptive Statistics

- Cardinality Estimators
- Correlation and Covariance
- Summary
- Inferential Statistics
- Hypothesis Tests
- **Probability Functions**

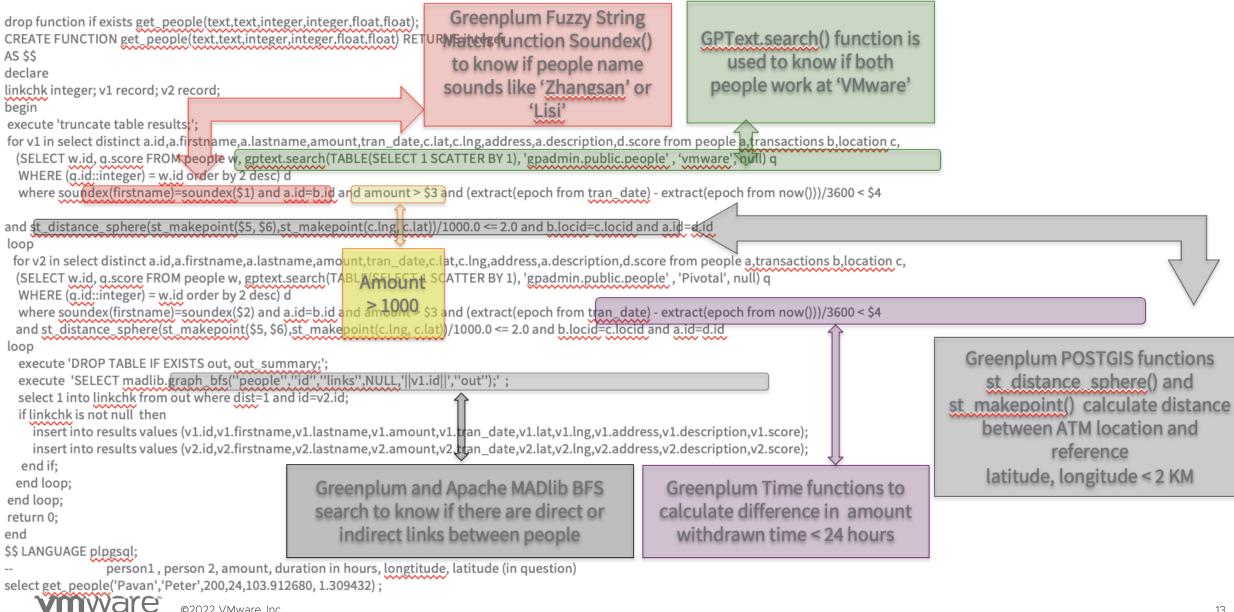
模型选择

Cross Validation Prediction Metrics Train-Test Split



Using a Hadoop Ecosystem: 10 steps, 3000+ Lines of code across 4 different systems

Using Greenplum: 1 step, 1 query - 34 Lines of Code



One query – using built-in functions: Soundex (sounds like), NLP (work at same company), Machine Learning MADlib (know directly), Time (yesterday), PostGIS (within 2km)

一个基于SQL的高级分析样例

"找到这样一些人, 在VMware工作, 且存在一个 <u>中间熟人介绍可认识,且名字听上去类似'张</u> 三'或'李四',且24小时内在距离VMware北京 办公室经纬度坐标 最短驾车路径距离 20KM内 一台ATM机上 已 取款金额 > 1千人民币"

Find anyone who works at VMware' and know each other 'directly' and whose names sound like 'Zhangsan' or Lisi' and have withdrawn an amount > 1000 within 24 hours at an ATM less than 2 KM from reference latitude and longitude.

一个时序数据库

一个基于ANSI-SQL的结 构化和半结构化数据库

一个图像识别引擎

一个R和Python的高性能 并行计算集群

一个大规模图分析 数据库

一个云原生数据库

一个空间地理数据 库

Thank You

mware EXPLORE 2022